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Data, Phenomena, Signal, and Noise

James Woodward ™

This essay attempts to provide additional motivation for the data/phenomena frame-
work advocated in Bogen and Woodward, “Saving the Phenomena” (1988).

Twenty years ago, Jim Bogen and I published a paper, “Saving the Phe-
nomena” (Bogen and Woodward 1988), in which we suggested that theory
structure in science often could be usefully described in terms of a three-
part distinction between data, phenomena, and explanatory theory.' The
ideas in that paper have been embraced by some (e.g., Kaiser 1991) and,
as is the practice in philosophy, criticized by others (McAllister 1997;
Glymour 2000; Schindler 2007). In what follows I try to provide additional
motivation for the framework advocated in our original paper. I also
respond to some criticisms.

I begin with some schematic remarks on the epistemic problematic faced
by a researcher who wishes to use data as evidence, since much of the
motivation for the data/phenomenon distinction derives from our attempt
to capture features of this problematic.

1. Data and Phenomena. Data are the individual outcomes of a mea-
surement or detection process, which may involve instruments or unaided
human perception. By extension, records or reports of such outcomes may
also be regarded as data. Examples include the results of using a ther-
mometer to make repeated measurements of the melting point of a sample
of lead, the photographs recording apparent stellar positions that Ed-

1To contact the author, please write to: History and Philosopohy of Science, University
of Pittsburgh, Pittsburgh, PA 15260; e-mail: jfw@pitt.edu.

iThanks to fellow symposiasts Jim Bogen, Katherine Brading, James McAllister, and
Paul Teller for helpful comments and discussion.

1. This initial paper was followed by others (Woodward 1989, 1998; Bogen and Wood-
ward 1992, 2005).
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dington took using several telescopes during his solar eclipse expedition
of 1919, and the outcomes of Robert Millikan’s measurements of e, the
charge of the electron, reported in his paper of 1913. In Millikan’s case,
his data represented (among other things) the time taken for small drops
of oil to fall between scratch marks in the focal plane of his telescope,
both when an applied electrical field was present and when it was absent.

In serious scientific research, data production is not usually an end in
itself.> Usually data is produced in order to serve as evidence for something
else—for features of phenomena. Examples of phenomena for which the
above data might serve as evidence are, respectively, the melting point of
lead, the deflection of starlight by the gravitational influence of the sun,
and the charge of the electron.

2. Noise. Investigators try to arrange data production processes so that
the data are causally influenced by the phenomena they are trying to learn
about (and because of this convey information about those phenomena),
but commonly data will also reflect the causal influence of many other
more local and idiosyncratic factors having to do with properties of in-
struments, measurement procedures, and the environment. The influence
of these additional factors on the data is often conceptualized as “error”
or “noise.” In the case of data consisting of thermometer readings, these
“other” causal factors will have to do with, for example, variations in the
temperature of the surrounding air and in the perceptual processing and
judgment of the observer who records the measurement results. In Mil-
likan’s case, his data regarding time of fall reflected, in addition to the
charge on the drops, the influence of small variations in air currents in
his apparatus; lack of uniformity in the electric field; as well as the fact
that the drops themselves, besides falling vertically, might also drift hor-
izontally in a way that was not independently detectable by Millikan.

In these and other cases, many of these “additional” factors influencing
data will vary on different occasions of measurement. In consequence,
the data themselves will often exhibit variability or scatter, even when a
measurement of the same phenomenon is repeated with the same instru-
ment or procedure. In addition, the values taken by the additional factors
influencing the data on particular occasions may be difficult to measure,
and the specific details of the ways in which they affect particular mea-
surement outcomes may be unknown.

Millikan’s laboratory notebooks provide an illustration of these points.
As is well known, Millikan excluded measurements taken on various drops
in his final calculations for e because he thought that various sources of

2. If it were, it would be unclear, among other things, why researchers ever discard
data.
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error were present that made the results unusable. On some occasions, he
has some idea, although conjectural, about such sources—thus, he at-
tributes one measurement result to the fact that he has mistakenly mea-
sured a dust particle rather than an oil drop and another to nonunifor-
mities in the field. But on other occasions, there are remarks like
“[calculated charge] very low something wrong” or “something the
matter,” indicating that he lacks detailed knowledge of the factors pro-
ducing his data but thinks it justifiable to exclude it. Whatever one thinks
of this decision, Millikan’s remarks illustrate the epistemic situation of a
researcher engaged in data to phenomena inference.

3. An Epistemic Problem. These features create a generic epistemic prob-
lem: investigators must somehow use data that is noisy and, where the
details of the process producing this noise are not fully understood, learn
about the phenomena of interest. The characterizations that Bogen and
I provided in early papers of data, phenomena, and explanatory theory
and their interrelations, and, in particular, our idea that we are often not
in a position to provide systematic explanations of data and that the
direction of inference is typically from data to phenomena and not from
phenomena to data, were meant to reflect or capture this epistemic prob-
lematic. I stress this because critics often assume, without argument, that
researchers engaged in data to phenomena reasoning are in an episte-
mically very different situation in which, for example, detailed under-
standing of the processes involved in the production of individual data
points is available “in principle.”

In Bogen and Woodward (1988) and subsequent papers, we allowed all
sorts of things, including events, processes, relationships, and instances
of property possession, to qualify as instances of phenomena. Despite this
ontological diversity, we argued that a distinguishing feature of most phe-
nomena of scientific interest is that, in contrast to data, they have stable,
repeatable characteristics. In principle, even if not in fact, phenomena can
reoccur with the same features in different circumstances and contexts.
For example, the value of e that Millikan attempted to measure is a
property of all electrons, even if measurements of this quantity on different
occasions are likely to produce somewhat different data.

The features of data and phenomena just described suggest the follow-
ing rough schematic: Instances of the phenomenon may be regarded as
repeated instances of some fixed feature or quantity P. If the measurement
procedure is working properly, individual data points d; observed on dif-
ferent occasions of measurement of P will be some function f of P and
of additional causal factors (“error” or “noise”) u,, which will take dif-
ferent values on different occasions of measurement: d, = f (P u;). Al-
though the researcher will be able to observe the d, she often will not be
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able to observe or measure the values of all of the additional causal factors
u,. She is thus faced with the problem of obtaining information about P
from the d, despite the fact that the d; confounds the influence of P and
u. As a general rule, accomplishing this requires additional empirical
assumptions A, besides whatever information is in the d;; it is only by
combining such A4, with the d, that reliable inferences about P are possible.
However, as illustrated below, it is an important fact about these A4, that
in order to secure the reliability of data to phenomena reasoning, they
do not need to be assumptions that can be used to provide systematic
explanations (or predictions) of individual data points.

Several other features of the epistemic situation just described deserve
particular emphasis. First, note that the problem the researcher faces is not
one of describing the d, or of providing derivations or predictions of the d.
Instead, her goal is to use the d, to make an inference about something else:
P.

Second, the idea that P is a stable, repeatable type detectable from
different bodies of data constrains this inference in important ways. In
particular, it points to a problem that the researcher must somehow deal
with: the possibility of overfitting or, more generally, the possibility that
data produced by any particular set of measurements may (because of
the influence of particular u, present on that occasion) exhibit special
features that may be misleading about P. Note that such misleading fea-
tures may be representative of or genuinely present in the data produced
on some occasion; the problem is that they are not representative of the
phenomenon. One mark of such overfitting is that features of the phe-
nomenon inferred from one data set are not reproduced in the inferences
made from other data sets designed to measure the same phenomenon.
The original data set fails to predict what we find in new data sets, where
“fails to predict” means that features of the phenomenon inferred from
the old data are not supported by the new data. (That the two data sets
themselves will not be identical goes without saying.)

As a simple statistical illustration, consider a sample of N data points
drawn from a Gaussan distribution of a variable X with mean p and
variance o°. It is easy to show that the sample variance s? is a biased
estimate of the variance of this distribution. Intuitively, this is because
there is likely to be less variability in any particular sample than in the
distribution from which the sample is drawn. If we use s2 as an estimator,
we overfit the population variance, underestimating it by a factor of
N — 1/N. Other examples involve fitting a high-order polynomial to a data
set that is, in fact, generated by a linear relationship plus noise—because
it has many free parameters, the high-order curve may fit the original
data well but fit other data generated by the same linear relationship very
poorly.
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4. Phenomena and Patterns in Data Sets. The way of thinking about the
relationship between data and phenomena just described may be con-
trasted with the picture advocated by James McAllister (e.g., McAllister
1997). According to McAllister, investigators are interested in “patterns”
found in data sets; they proceed by “decomposing” data into noise or
error (according to McAllister, determined by “stipulation” of an “error
level”) and a remaining “pattern.” A phenomenon is anything that cor-
responds to such a pattern. An indefinitely large number of such stipu-
lations and decompositions are legitimate. Thus, there are indefinitely
many patterns in any data set and, corresponding to these, indefinitely
many phenomena.

Assuming this is intended as a description of data to phenomena rea-
soning, in my opinion it goes wrong at the outset. The discernment of
“patterns” in particular data sets (or, more broadly, the description of
particular data sets) is not in itself a matter of much scientific interest. If
it were, the notion of overfitting a particular data set (and that there is
something wrong with doing this) would make no sense—the only issue
would be whether the data set is accurately described, whether by signal/
noise decomposition or in some other way. The idea of overfitting, or that
certain uses of data can be misleading (e.g., that a certain data-based
estimator can be biased), only makes sense if one views the data as a
potential source of information about something that is not just a pattern
in that particular data set but, rather, has some independent existence.
For example, if one’s object is just to describe (find a pattern in) a par-
ticular data set, there is no reason not to use the sample variance s? of
this set—indeed, this will furnish a more accurate description of this data
than any “corrected,” unbiased estimate, although a less accurate de-
scription of the underlying distribution. The general point is that the
problem of describing features of a particular data set with no implications
for what one might expect in other data sets is a different problem from
using that particular data set to infer to some stable feature of the world,
where it is assumed that other data sets also carry information about this
stable feature. We go wrong at the start if we fail to distinguish these
problems. McAllister seems to assume that reasoning with data has to do
only with the first problem, whereas I suggest that it is typically the latter
problem which is of interest.

5. The Role of Theory. The remaining element in the original Bogen-
Woodward framework was what we called explanatory or “general,”
“high-level” theory. We related this to the data-phenomena distinction in
the following way: claims about phenomena but not data were, we con-
tended, potential objects of systematic explanation and prediction by gen-
eral theory—claims about phenomena rather than data were what such
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theories attempted to “capture” or “account for.” For example, general
relativity (GR) provides, in conjunction with other assumptions, a sys-
tematic explanation of the deflection of starlight by the sun but not of
the data from Eddington’s eclipse expedition, which served as evidence
for the starlight deflection.?

None of this was meant to deny that empirical assumptions of many
sorts are “involved in ” or “relied on” in reasoning from data to phe-
nomena—our original papers provided many examples of this. If all em-
pirical assumptions are regarded as part of a “theory” (just in virtue of
being empirical), then data to phenomena reasoning is always “theory
laden.” Our claims about theory explaining phenomena rather than data
were not intended to deny this but, rather, were attempts to express several
interrelated ideas. First, we thought the empirical assumptions figuring
in data to phenomena reasoning were often rather different in character
from core explanatory assumptions figuring in theories like general rel-
ativity. Relatedly, we thought that the assumptions employed in data to
phenomena reasoning often played a different role in reasoning than the
role, say, the field equations of GR play in connection with the deflection
of starlight by the sun. It was these differences—the different ways that
different sorts of “theory” are “involved” in, on the one hand, the data-
phenomena relation and, on the other, the general theory-phenomena
relation that we were attempting to capture with our talk of high-level
theory explaining phenomena, not data.

As a simple illustration, consider the role of assumptions about the
distribution of the error in data to phenomena reasoning—for example,
the assumptions that the error is normally distributed or that it is un-
correlated with other variables representing the phenomenon of interest.
Such assumptions are certainly empirical—indeed, they often turn out to
be false in situations in which they are unthinkingly assumed. Nonetheless,
their role is not plausibly regarded as one of providing systematic expla-
nations of particular items of data. To explain individual data one would
presumably need to know which particular causal factors represented by
the error term occurred on particular occasions and how these contributed
to individual measurement outcomes. The assumption that the error term
is distributed in a certain way does not provide such information. More

3. The relevant notion of systematic explanation is characterized in our original pa-
pers—it involves detailed derivations from principles of considerable generality. As
noted in those papers, since (if things are working properly) data will reflect the causal
influence of the phenomenon detected, there is also a sense in which this phenomenon
figures in an explanation of the data. However, this sort of explanation is different in
character from the systematic explanations provided in general theory—it has the
structure of a singular causal explanation.
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importantly, it does not need to provide such information for it to play
its usual role in data to phenomena reasoning. For that purpose, very
general assumptions about the distribution of the error will often suffice.

6. A More Detailed Example. I turn now to a more detailed look at
another statistical example. This will both illustrate some of the features
of data to phenomena reasoning described above and will also allow for
a more detailed assessment of some of criticisms of that distinction. I
emphasize that my use of this example is not meant to imply that all data
to phenomena reasoning is just a matter of statistical inference. However,
statistical inference is one important component of such reasoning, and, fur-
thermore, it has the virtue that because a formal framework is employed,
certain aspects of that reasoning process stand out particularly clearly.

People unfamiliar with basic ideas of statistical inference may find it
natural to suppose talk such as McAllister’s about decomposing data into
patterns and noise simply describes in an abstract but uncontroversial
way what is involved in standard statistical inference. This is not the case.
Instead, McAllister’s framework is radically different than the standard
one for posing problems of statistical inference. In particular, it does not
allow one to even raise issues that are at the heart of statistical inference,
standardly conceived: for example, issues about the properties of esti-
mators and how these properties are related to the structure of the error
distribution. I will also suggest (see n. 5 below) that McAllister’s frame-
work conflates choices that are genuinely conventional or stipulative (such
as choice of an “error level” in the sense of a significance level) with
considerations that are not a matter of stipulation at all, such as issues
about how errors in the sense of causal factors in addition to the phe-
nomenon of interest are distributed.

As a point of departure, I distinguish descriptive from inferential uses
of statistics. One use of statistics is simply to describe a body of data in
a summary, compact way. Given a set of numbers, I may calculate their
mean, their standard deviation, fit a linear relationship to them (guided
by some conception of what constitutes a best fit, such as least squares),
and so on. This is just a matter of carrying out certain mathematical
operations on the data—the mean, standard deviation, and so forth, are,
mathematically speaking, functions of the data alone, and their calculation
does not require any additional assumptions that “go beyond” the data.
In my view insofar as our interests are just in describing some body of
data, there is no single right way to do this—it might be reasonable to
adopt any one of a number of different descriptions, depending on the
data itself and the purposes for which we may want to use the description.
Thus, we might decide to summarize the data by giving its mode or median
rather than its mean, or we might describe various qualitative facts about
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the distribution—that it is normal, or bimodal, or skewed. Obviously,
such different descriptions, if true, should not be regarded as competing
with each other.

It is also characteristic of such data description that it does not involve
any substantive or nontrivial notion of “error” (i.e., other than misde-
scription of the data itself). Of course, one may, like McAllister, “decom-
pose” some particular d; into two different quantities and label one of
them “error” (d, = x; + u;). One may also do this with a collection of
data points and ask how the resulting “errors” are distributed. However,
without further constraints, there is no right or wrong way to carry out
such a decomposition and no basis for interpreting the resulting “error”
as having to do with additional causal factors besides the phenomenon
of interest that influences the data. The decomposition is just a matter of
carrying out certain mathematical operations on the data.

I mention this because some of what McAllister says about decom-
posing data into signal and noise seems correct if one is engaged in purely
descriptive statistics—here, talk of a plurality of different decompositions
of data into signal and noise, none more legitimate than the others, seems
entirely appropriate.

By contrast, data to phenomena inference involves the use of statistics
for inference, and this is fundamentally different from descriptive statistics.
Here we are interested not (or not just) in describing a given body of data
but in using the data to infer to something else. Issues about the conditions
under which (or the additional assumptions that must hold in order that) the
data may reliably used for this purpose loom large. Now the notion of error
has a substantive significance (in terms of, e.g., additional causal factors
influencing the data), and it is a mistake to think that error is just the result
of performing some arbitrary mathematical operation on the data.

As an illustration, suppose one is interested in estimating a linear re-
gression equation with just one independent variable X and dependent
variable Y. The data consist of particular values of X and Y, x; and y,
for each of n measurement pairs. One possible use for such an equation
is simply to describe this body of data in terms of a “best-fitting” line of
form y, = ax, + u, with no implication about whether a similar relation-
ship holds in any other body of data and no assumptions or implications
about how these data points have been produced or generated. There are
many possible criteria for “best fitting,” but a widely accepted criterion
involves least squares: one chooses the line that minimizes the sum of the
squared vertical distances of the data points x,, y, from that line. In other
words, one chooses that value a* for the coefficient a that minimizes the
sum of the squared differences:

0 = D, (3 — a*x)”. (1)
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This can be accomplished by choosing a* = Sxy/S?. Here Sxy is the
sample covariance of X and Y, and S? is the sample variance of X. Note
that on this interpretation, the term u; is simply whatever results from
subtracting a*x, when a* is determined in the way described above—u;
has no more substantive significance (i.e., no interpretation in terms of
“other” causal variables). Moreover, the mathematical operation of
choosing a* in accord with (1) can be carried out on the data indepen-
dently of any further assumptions about the u, or anything else. Since
we are not using «* as an estimate of anything outside this particular
data set, there is no issue about whether or under what conditions this
estimate is reliable or predictive. Insofar as our purposes are to describe
this data set, we might equally appropriately have carried out some
different set of mathematical operations on the data—we might have
used another criterion of best fit (e.g., minimizing the sum of the absolute
values | y, — ax,|) and/or fitted a higher-order curve to the data.

The descriptive project just described should be distinguished from a
second project that does involve inferential statistics. Here it is assumed
that the data have been generated by some in-principle repeatable process
or data generating mechanism (DGM) that generates the data in accord
with the linear relationship

Y =aX+ U )

Our goal is to use these data to estimate the value of ¢ in (2). Here we
are not thinking of (2) just as a description of a pattern that happens to
hold in the particular data set at hand but that we have no reason to
think will hold outside of this data set. Instead, (2) is regarded as char-
acterizing a stable, repeatable (even if only locally stable) relationship (a
“mechanism”) that generates values of Y for given values of X but where
Y is also influenced by other causal factors represented by U. (The values
of U vary but are assumed to follow a stable probability distribution—
another example of an empirical assumption made in some data to phe-
nomena inference.) Thus, (2) is the sort of relationship that might be used
to predict what we might find in other samples of data generated by the
same DGM. Because this is our goal, we face a new problem—we have
to worry about the possibility that the way we use the sample data may
be misleading about the characteristics of this underlying process. Given
some procedure for using the sample data to infer to features of this
underlying process, it now makes sense to ask about the conditions under
which this procedure will be reliable or not (according to some specified
conception of reliability such as unbiasedness, etc.; see below) and also
to ask whether there is some way of bounding the magnitude of the error
that the procedure introduces. Neither question would make sense if our
interest were just in describing the data.
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Under what conditions might we use information in the sample data
to estimate a value g* for « in (2) when this coefficient is conceived as
characterizing some underlying process generating the sample data? A
standard result in statistics is that if the error U satisfies certain distri-
butional assumptions (A4), then the estimator given by (1) will have de-
sirable characteristics—in particular, it will be a minimum variance, un-
biased estimator.*

The distributional assumptions 4 are as follows:

(i) EU) =0,

(i) Var(U)) = o7 where ¢ is constant,
(i) Absence of autocorrelation in U,
(iv) X and U are uncorrelated.

Note that expression (1) is the same as in the purely descriptive task,
but now the interpretation and goal have shifted. In particular, g* is now
conceptualized as a random variable that is an estimator for something
else, the fixed parameter a, which characterizes the DGM. The goal is
now to use the data in the sample to infer to a feature of the process that
generates the data, rather than to describe a pattern in the data. (Again,
the patterns “in” the data will vary from sample to sample, but a is a
parameter that is taken to be stable across different samples generated
by the same DGM.) It is this conceptual separation between, on the one
hand, the data and statistics that are defined just from the data, such as
the sample covariance s,,, the variance s;, or the estimator ¢*, and, on
the other hand, the parameter a that allows one to even raise the question
of whether and in what circumstances a* is appropriate to use in order
to estimate a.

Now consider the assumptions A concerning the error/noise, the sat-
isfaction of which determines whether g¢* is a good estimator to use.
Although McAllister characterizes data to phenomena reasoning in terms
of choosing a “noise level,” the assumptions 4 are not naturally regarded
as about the level of the noise. Rather, they have to do with the distribution
of U and about its relationship to X. Moreover, in contrast to McAllister’s
treatment, it is an empirical question (once error/noise is interpreted in
terms of additional causal factors) and not a matter that can be settled
by “stipulation” how the noise is distributed. I do not see how to make
sense of the idea that if, for example, U is correlated with X, then «*

4. A random variable x* is an unbiased estimator for parameter X, if E(x*) = X.

This content downloaded from 130.49.198.5 on Mon, 20 Oct 2014 23:27:02 PM
All use subject to JSTOR Terms and Conditions


http://www.jstor.org/page/info/about/policies/terms.jsp

802 JAMES WOODWARD

should not be used as an estimator of « if it is just a matter of stipulation
(and there is no fact of the matter) about whether U is so correlated.’

7. Data, Phenomena, Sample, and Population. I conclude with some brief
comments on another related issue. In his article (2000), Bruce Glymour
suggests that all cases of reasoning from data to phenomena are just cases
of reasoning, via some process of statistical inference, from a sample to
a population parameter. It follows, according to Glymour, that the data-
phenomenon framework is superfluous—it reproduces, in other language,
a distinction already adequately described by the sample/population dis-
tinction.

Unsurprisingly, I disagree with this claim. Although statistical inference
is an important component in much data to phenomena reasoning, it is
not involved in all such reasoning. Even when it is, there is typically more
to data to phenomena reasoning than statistical inference. The problem
Millikan faced in finding a second-order correction to Stokes’s law that
he could use in the analysis of his data was not a statistical problem.

Even when statistical inference plays a prominent role, it is still not
obvious that the phenomena one infers should be regarded as a parameter
in some specific population. Suppose that repeated measurements of the
melting point of lead M are made with some measurement procedure R,
and, on the basis of these, a claim is made about M. What is the population
P of which M is a parameter? One suggestion might be that P is a hy-
pothetical population: something like the collection of results one would
get by repeating R indefinitely in the same circumstances. Call K the
population mean of this population and think of the sample mean from
the measurements as an estimate of K. Of course, one hopes K coincides
with (or at least is “close” to) the true melting point M. But it seems
wrong, as a conceptual matter, to identify M with the mean of any par-
ticular population. For one thing, if there is any systematic error in R,
K will not even coincide with M. More generally, the true melting point
M is supposed to be a feature of all samples of pure lead (for a fixed
pressure, etc.), and it can be measured in a variety of different ways, with
different thermometers and so forth, all of which will yield different data.
It seems farfetched, to say the least, to think of all possible data that
might result from different possible measurements of the melting point
of lead as samples drawn from a single population.

5. An additional potential source of confusion associated with the notion of a “noise
or error level” is that it fails to distinguish “error level” in the sense of choice of
significance level (which is a matter of stipulation) from the “error” represented by U.
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